原文服务方: 华侨大学学报(自然科学版)       
摘要:
对源自UCI数据库的葡萄酒数据进行预处理,选取径向基函数作为最小二乘支持向量机的核函数;然后,根据“一对一”算法设计出最小二乘支持向量机多元分类器,并应用交叉验证算法对参数寻优,建立葡萄酒质量评判模型.同时,用BP神经网络、标准支持向量机分类器对葡萄酒进行训练.对比实验结果表明:最小二乘支持向量机比BP神经网络、标准支持向量机的平均分类准确率高,最高分类准确率为100%.
推荐文章
基于MapReduce的最小二乘支持向量机回归模型
最小二乘支持向量机
MapReduce编程模式
局部多模型方法
加速比
可扩展性
基于最小二乘支持向量机的T-S模型在线辨识
T-S模型
时间窗
势能
最小二乘支持向量机
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
基于最小二乘支持向量机的复杂装备故障预测模型研究
故障预测模型
回归算法
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于最小二乘支持向量机的葡萄酒品质评判模型
来源期刊 华侨大学学报(自然科学版) 学科
关键词 最小二乘支持向量机 葡萄酒 多元分类器 交叉验证 品质评判
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 30-35
页数 6页 分类号 TS262.6|TS207.3|TP183
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王鲜芳 河南师范大学计算机与信息技术学院 35 104 6.0 8.0
2 王亚丽 河南师范大学计算机与信息技术学院 11 14 2.0 3.0
3 吴瑞红 河南师范大学计算机与信息技术学院 5 46 3.0 5.0
4 张环冲 河南师范大学计算机与信息技术学院 4 43 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (15)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (14)
二级引证文献  (33)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(5)
  • 引证文献(2)
  • 二级引证文献(3)
2016(8)
  • 引证文献(1)
  • 二级引证文献(7)
2017(11)
  • 引证文献(1)
  • 二级引证文献(10)
2018(7)
  • 引证文献(0)
  • 二级引证文献(7)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
最小二乘支持向量机
葡萄酒
多元分类器
交叉验证
品质评判
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华侨大学学报(自然科学版)
双月刊
1000-5013
35-1079/N
大16开
1980-01-01
chi
出版文献量(篇)
2681
总下载数(次)
0
总被引数(次)
14643
论文1v1指导