基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了预测混煤的灰熔点,采用支持向量机建立煤灰软化温度模型,模型将煤的灰成分作为输入量,煤的软化温度作为输出量,利用网格搜索寻优方法对支持向量机(SVM)模型的参数进行了优化,在设定的不同精度下分别获得模型的最优参数,利用优化后的模型对单煤和混煤的灰熔点进行了预测,并将不同精度下的预测结果与实验结果进行对比.煤灰软化温度模型设定精度为0.01时,单煤样本预测相对误差最小,其最大相对误差和平均相对误差分别为3.00%和0.48%;运用此模型对混煤预测的最大相对误差和平均相对误差分别为1.74%和0.62%.预测结果表明,经网格搜索优化后的支持向量机模型对煤灰熔点预测较精确.
推荐文章
基于支持向量机与遗传算法的灰熔点预测
灰熔点
支持向量机
遗传算法
优化
预测
基于和声搜索算法的支持向量机参数优化
支持向量机
参数选择
和声搜索
改进引力搜索最小二乘支持向量机交通流预测
引力搜索算法
混沌优化算法
自适应权重系数
最小二乘支持向量机
交通流预测
基于支持向量机的需水预测研究
统计学习理论
支持向量机
回归模型
需水预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于网格搜索和支持向量机的灰熔点预测
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 网格搜索 支持向量机 灰熔点 混煤
年,卷(期) 2011,(12) 所属期刊栏目 能源工程
研究方向 页码范围 2181-2187
页数 7页 分类号 TK223
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2011.12.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 岑可法 1286 23862 65.0 87.0
2 邱坤赞 46 379 11.0 18.0
3 周昊 139 1532 21.0 34.0
4 林阿平 3 2 1.0 1.0
5 李清毅 4 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (193)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(2)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(7)
  • 参考文献(1)
  • 二级参考文献(6)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(10)
  • 参考文献(2)
  • 二级参考文献(8)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网格搜索
支持向量机
灰熔点
混煤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导