基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文针对核函数参数选择的随意性影响支持向量机分类性能的问题,提出了一种基于离散编码的蚁群算法(C-CACO-DE)的SVM核函数优化模型.C-CACO-DE解决了连续函数优化的蚁群算法(C-ACO)求解之前必须进行预处理的问题,解决了基于网格划分策略的连续域蚁群算法(CACO-GT)在求解精度的缺点、最优解必在定义域内的等分割点问题.仿真结果验证了该方法的有效性,F1值达到了90%以上.
推荐文章
基于改进烟花算法的SVM特征选择和参数优化
二进制编码
烟花算法
特征选择
参数优化
一种改进粒子群算法的混合核ε-SVM参数优化及应用
改进PSO
混合核
支持向量机
参数优化
回归预测
基于SVM用户建模的核函数选择研究
用户建模
支持向量机
核函数
基于改进混沌粒子群的混合核SVM参数优化及应用
支持向量机
混合核
混沌粒子群优化
参数优化
煤与瓦斯突出
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ACO算法的SVM核函数的参数优化
来源期刊 计算机工程与科学 学科 工学
关键词 蚁群算法 核函数 支持向量机 参数优化
年,卷(期) 2011,(10) 所属期刊栏目 智能计算
研究方向 页码范围 126-130
页数 分类号 TP18
字数 3729字 语种 中文
DOI 10.3969/j.issn.1007-130X.2011.10.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵新建 浙江工业大学计算机学院 46 270 8.0 15.0
2 徐俊 浙江工业大学计算机学院 39 170 8.0 10.0
3 沈友文 浙江工业大学计算机学院 2 10 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (126)
参考文献  (10)
节点文献
引证文献  (9)
同被引文献  (5)
二级引证文献  (12)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(3)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(10)
  • 引证文献(1)
  • 二级引证文献(9)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
蚁群算法
核函数
支持向量机
参数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导