基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种融合纹理特征的两阶段聚类分割算法.首先,选择纹理特征、差分均值和颜色分量这3个特征,组成一个分割所用的特征矢量;然后,使用直方图对特征矢量进行初始聚类中心和类别数的估算;最后,通过模糊C均值算法对特征矢量进行聚类.该算法有效地克服了模糊C均值(FCM)容易陷入局部最优的缺陷,使聚类结果更加精确.实验结果表明该方法比一些现存方法的分割效果要好.
推荐文章
一种新的两阶段FCM聚类算法
模糊聚类
模糊C均值算法
初始聚类中心
两阶段聚类
SOM+K-means两阶段聚类算法及其应用
聚类
自组织神经网络
K-means
细分
基于K均值和aiNet的两阶段文本聚类算法
文本聚类
向量空间模型
人工免疫网
k均值聚类算法
基于聚类划分的两阶段离群点检测算法
层次聚类
K-均值
信息熵
距离和
离群点检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合纹理特征的两阶段聚类分割算法
来源期刊 中国图象图形学报 学科 工学
关键词 局部二进制模式 模糊C均值 聚类分割 直方图
年,卷(期) 2012,(9) 所属期刊栏目 图像处理和编码
研究方向 页码范围 1075-1084
页数 分类号 TP391
字数 5591字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李德华 华中科技大学图像识别与人工智能研究所 123 1321 19.0 29.0
2 王改华 华中科技大学图像识别与人工智能研究所 4 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (27)
节点文献
引证文献  (4)
同被引文献  (6)
二级引证文献  (35)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2010(7)
  • 参考文献(7)
  • 二级参考文献(0)
2011(5)
  • 参考文献(5)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(4)
  • 引证文献(3)
  • 二级引证文献(1)
2015(6)
  • 引证文献(0)
  • 二级引证文献(6)
2016(6)
  • 引证文献(0)
  • 二级引证文献(6)
2017(10)
  • 引证文献(0)
  • 二级引证文献(10)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
局部二进制模式
模糊C均值
聚类分割
直方图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导