基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在高维数据分类中,针对多重共线性、冗余特征及噪声易导致分类器识别精度低和时空开销大的问题,提出融合偏最小二乘(Partial Least Squares,PLS)有监督特征提取和虚假最近邻点(False Nearest Neighbors,FNN)的特征选择方法:首先利用偏最小二乘对高维数据提取主元,消除特征之间的多重共线性,得到携带监督信息的独立主元空间;然后通过计算各特征选择前后在此空间的相关性,建立基于虚假最近邻点的特征相似性测度,得到原始特征对类别变量解释能力强弱排序;最后,依次剔除解释能力弱的特征,构造出各种分类模型,并以支持向量机(Support Vector Machine,SVM)分类识别率为模型评估准则,搜索出识别率最高但含特征数最少的分类模型,此模型所含的特征即为最佳特征子集.3个数据集模型仿真结果均表明,由此法选择出的最佳特征子集与各数据集的本质分类特征吻合,说明该方法有良好的特征选择能力,为数据分类特征选择提供了一条新途径.
推荐文章
基于虚假最近邻点GT准则的化工模型变量选择
变量选择
Gamma检验
虚假最近邻点
化工建模
基于多稀疏分布特征和最近邻分类的物体识别方法
物体识别
稀疏表示
最近邻距离
梯度
街区距离
高光谱图像的特征提取与特征选择研究
高光谱图像
特征提取
特征选择
主成分分析
最小噪声分离
独立成分分析
核主成分分析
投影寻踪
纹理图像的特征提取和分类
纹理图像
特征提取
分类
支撑矢量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合PLS监督特征提取和虚假最近邻点的数据分类特征选择
来源期刊 计算机与应用化学 学科 工学
关键词 偏最小二乘 虚假最近邻点 相似性测度 特征选择
年,卷(期) 2012,(7) 所属期刊栏目
研究方向 页码范围 817-821
页数 5页 分类号 TP391.4|O235
字数 5115字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李太福 87 399 11.0 15.0
2 苏盈盈 50 147 6.0 9.0
3 姚立忠 西安石油大学电子工程学院 8 85 6.0 8.0
4 魏正元 重庆理工大学数学与统计学院 21 82 5.0 8.0
5 颜克胜 重庆理工大学数学与统计学院 4 22 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (15)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (4)
二级引证文献  (2)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(3)
  • 二级参考文献(1)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
偏最小二乘
虚假最近邻点
相似性测度
特征选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与应用化学
双月刊
1001-4160
11-3763/TP
大16开
北京中关村北二街2条1号
82-500
1984
chi
出版文献量(篇)
5704
总下载数(次)
10
总被引数(次)
27612
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
重庆市自然科学基金
英文译名:
官方网址:http://law.ddvip.com/law/2006-09/11584979384040.html
项目类型:重点项目
学科类型:
论文1v1指导