基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当今人工智能短期负荷预测方法存在的缺陷,提出了一种最小二乘支持向量机(LS-SVM)短期负荷预测方法,即建立最小二乘支持向量机(LS-SVM)回归模型.在选取该模型训练样本时,为了提高预测精度,采用灰色关联投影法来选取相似日.同时,针对标准粒子群优化算法易陷入局部最优的缺点,提出自适应变异粒子群优化算法来选择最小二乘向量机的参数,从而提高了负荷预测精度,避免了对模型参数的盲目选择.仿真结果分析表明,该方法有效、可行.
推荐文章
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
最小二乘支持向量机的短期负荷多尺度预测模型
短期负荷
多尺度预测
多孔算法
最小二乘支持向量机
NRS和PSO算法优化最小二乘支持向量机的短期电力负荷预测
短期电力负荷预测
邻域关系
属性约简
最小二乘支持向量机
粒子群算法
预测精度
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的短期负荷预测
来源期刊 黑龙江电力 学科 工学
关键词 短期负荷预测 支持向量机 相似日 粒子群优化
年,卷(期) 2012,(5) 所属期刊栏目 分析与研究
研究方向 页码范围 349-352
页数 分类号 TM715.1
字数 3291字 语种 中文
DOI 10.3969/j.issn.1002-1663.2012.05.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姜妍 东北电力大学电气工程学院 1 3 1.0 1.0
2 兰森 5 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (285)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (8)
二级引证文献  (2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(3)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
短期负荷预测
支持向量机
相似日
粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
黑龙江电力
双月刊
1002-1663
23-1471/TM
大16开
哈尔滨市香坊区建北街61号
1979
chi
出版文献量(篇)
3200
总下载数(次)
3
总被引数(次)
8902
论文1v1指导