作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统BP神经网络算法在对预测问题中存在的网络具有易陷入局部极小、收敛速度慢的缺陷,引入附加动量法和自适应学习速率法改进BP神经网络预测模型.将改进后的预测方法应用于企业的市场需求预测问题,以某汽车制造企业过去12个月汽车销售量的实际数据为样本,分别采用基于时间序列和基于因素分析两种预测模型,对所提出的改进预测方法进行实证分析.结果表明:所提出的算法对销售量的预测精度较高,误差均小于8.8%,运算时间也有所降低,预测结果表明文中所提出的算法在处理网络易陷入局部极小、收敛速度慢的预测问题方面的有效性.
推荐文章
基于改进BP神经网络的预测模型及其应用
神经网络
BP算法
L-M算法
非线性系统
预测
BP神经网络的改进及其应用
人工神经网络
BP神经网络
需水量
预测
预测济南地下水位的BP神经网络模型及其改进
BP神经网络
过拟合现象
多重共线性
地下水位预测
济南市
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的BP神经网络预测模型及其应用
来源期刊 武汉理工大学学报(交通科学与工程版) 学科 工学
关键词 附加动量法 需求预测 改进的BP神经网络 时间序列
年,卷(期) 2012,(6) 所属期刊栏目
研究方向 页码范围 1252-1255
页数 4页 分类号 TP399
字数 2514字 语种 中文
DOI 10.3963/j.issn.2095-3844.2012.06.037
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱英 武汉东湖学院管理学院 1 18 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (8)
参考文献  (7)
节点文献
引证文献  (18)
同被引文献  (36)
二级引证文献  (39)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(7)
  • 引证文献(3)
  • 二级引证文献(4)
2016(14)
  • 引证文献(4)
  • 二级引证文献(10)
2017(11)
  • 引证文献(2)
  • 二级引证文献(9)
2018(9)
  • 引证文献(2)
  • 二级引证文献(7)
2019(9)
  • 引证文献(2)
  • 二级引证文献(7)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
附加动量法
需求预测
改进的BP神经网络
时间序列
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉理工大学学报(交通科学与工程版)
双月刊
2095-3844
42-1824/U
大16开
武昌区和平大道1178号
38-148
1959
chi
出版文献量(篇)
5723
总下载数(次)
12
总被引数(次)
47608
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导