基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对人脸朝向分类这一问题,使用BP神经网络进行判别分析是一个较为成熟的方案,在此基础上,提出了一种新的特征值提取方法.首先探测人脸图像边界并将其转化成二值化的0-1矩阵,分割取出图像中眼睛部分对应的矩阵数据;考虑到人脸图像的特殊性,即头部鬓角的信息数据可能造成干扰,删减相应的矩阵信息;接着进行特征值的提取,取出矩阵中为1的元素分布的“离散程度”和分布位置的平均值形成二维向量;最终以该二维向量为神经网络的输入,5种人脸朝向分类为神经网络的输出,正确识别率可以达到100%.这样的特征值提取方式使特征值具有实际意义,相比于PCA特征值提取法更易理解;无需求出人眼的具体位置,相比于求人眼位置的几何方法更加简洁.
推荐文章
基于BP神经网络的人脸检测AdaBoost算法
人脸检测
BP神经网络
AdaBoost
基于GA-BP神经网络的人脸检测
人脸检测
BP网络
遗传算法
GA-BP网络
基于DCT-BP神经网络的人脸表情识别
表情识别
离散余弦变换
误差向传播算法
前向神经网络
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的人脸朝向分类的新思路
来源期刊 计算机科学 学科 工学
关键词 判别分析 BP神经网络 离散程度 人脸朝向识别
年,卷(期) 2012,(z3) 所属期刊栏目 数字信息处理
研究方向 页码范围 366-368,374
页数 4页 分类号 TP183
字数 3727字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘昊 重庆大学软件学院 7 48 4.0 6.0
2 方雯逸 重庆大学软件学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (152)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (7)
二级引证文献  (11)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
判别分析
BP神经网络
离散程度
人脸朝向识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
论文1v1指导