作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对车牌容易变形,涂漆易脱落,受光照等环境因素的影响,本文将SIFT算法和BP神经网络应用在车牌识别领域中,有效地克服了上述问题。SIFT算法对汉字,字母和数字提取SIFT局部特征,并用BP神经网络进行识别。克服了传统的模板匹配方法对数字和字母形状相近不能识别的缺点。实验中的结果和模板匹配法相比较,表明该方法明显优于传统的模板匹配法。
推荐文章
基于并行模糊神经网络的车牌识别研究
BP神经网络
并行处理
PVM网络
车牌识别
基于BP神经网络的汽车图片车牌识别
车牌识别
神经网络
区域提取
智能交通
基于神经网络的分阶车牌字符识别算法研究
车牌字符识别
BP神经网络
卷积神经网络
分阶
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SIFT和BP神经网络的车牌识别技术的研究
来源期刊 黑龙江科技信息 学科 工学
关键词 SIFT算法 BP神经网络 车牌识别
年,卷(期) 2012,(31) 所属期刊栏目 科技论坛
研究方向 页码范围 59-59,211
页数 2页 分类号 TP183
字数 3914字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 查颖 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SIFT算法
BP神经网络
车牌识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术创新
旬刊
2096-4390
23-1600/N
16开
黑龙江省哈尔滨市
14-269
1997
chi
出版文献量(篇)
126927
总下载数(次)
266
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导