作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
简要介绍了瓦斯涌出量预测问题和广义回归神经网络(GRNN)的特点,指出与常用的BP神经网络相比,使用广义回归神经网络(GRNN)具有收敛迅速、人为干扰小等优点,适宜用于瓦斯涌出量的预测.并对一个案例进行预测,证明了广义回归神经网络(GRNN)可以满足实际生产的精度要求,较好解决瓦斯涌出量预测的问题.
推荐文章
基于灰色理论和人工神经网络的瓦斯涌出量预测
灰色理论
神经网络
瓦斯涌出量
预测
基于MPSO-RBF的瓦斯涌出量预测研究
RBF神经网络
改进的PSO算法
瓦斯预测
基于径向基的瓦斯涌出量灰色预测模型
瓦斯涌出量
灰色预测
RBF
预测精度
基于模糊粗糙集的瓦斯涌出量预测模型的研究
瓦斯量预测
模糊粗糙集
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于广义回归神经网络的瓦斯涌出量预测
来源期刊 石家庄铁道大学学报(自然科学版) 学科 工学
关键词 神经网络 涌出量 预测 GRNN
年,卷(期) 2013,(4) 所属期刊栏目 计算机与网络工程
研究方向 页码范围 105-108
页数 4页 分类号 TD712
字数 1839字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 葛江 西南交通大学交通运输与物流学院 3 11 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (92)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (21)
二级引证文献  (10)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
神经网络
涌出量
预测
GRNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
石家庄铁道大学学报(自然科学版)
季刊
2095-0373
13-1402/N
大16开
河北省石家庄市北二环东路17号
1982
chi
出版文献量(篇)
2432
总下载数(次)
4
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导