基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决类别属性数据流异常点检测问题,针对事务数据流环境,提出了基于属性关联及匹配差异度的数据流异常检测模型AAMDD(attribute associations and match difference degree).AAMDD模型离线构建一个关联规则库,并对其进行增量式更新.同时,利用时间敏感型滑动窗口(time-sensitive sliding windows,TimeSW)维护数据流数据,每经过一个时间跨度,就将当前窗口中每条数据包含的项集与关联规则库进行匹配,计算匹配差异度,根据匹配差异度的不同在线检测异常点.此外,给出了与AAMDD模型相对应的算法AAMDD-algorithm.实验结果表明,AAMDD-algorithm比FODFP-Stream算法的效率和检测精确度分别平均提高了37.43%和5.51%,并且AAMDD-algorithm的查全率保持在77%以上,可用于事务型数据流异常检测.
推荐文章
一种基于随机空间树的数据流异常检测算法
数据流
异常检测
随机空间树
单窗口策略
AUC得分
运行时间
基于多数据流分析的木马检测方法
数据流
Bagging
木马检测
C4.5决策树
基于SBWS_GPR预测模型的不确定性多数据流异常检测方法
不确定性
数据流
高斯过程回归
索引号
滑动窗口
分布式数据流上的连续异常检测
异常检测
核密度估计
分布数据流
数据流挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于属性关联及匹配差异度的数据流异常检测
来源期刊 西南交通大学学报 学科 工学
关键词 数据流 关联规则 差异度 增量式异常检测 概念漂移
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 107-115
页数 9页 分类号 TP311
字数 6961字 语种 中文
DOI 10.3969/j.issn.0258-2724.2013.01.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 琚春华 浙江工商大学计算机与信息工程学院 99 655 13.0 20.0
5 李耀林 浙江工商大学计算机与信息工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (59)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据流
关联规则
差异度
增量式异常检测
概念漂移
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西南交通大学学报
双月刊
0258-2724
51-1277/U
大16开
四川省成都市二环路北一段
62-104
1954
chi
出版文献量(篇)
3811
总下载数(次)
4
总被引数(次)
51589
论文1v1指导