基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种应用神经网络预测电磁干扰的方法.针对遗传算法总体搜索能力较强但容易陷入局部最优,而模拟退火算法具有较强的局部搜索能力,又能避免搜索陷入局部最优解的特点,将模拟退火算法与遗传算法相结合,优化多层前馈(BP,Back Propagation)神经网络,获取最优的权值和阈值,并采用模拟退火的思想确定隐含层神经元的个数,进而建立基于神经网络的电磁干扰预测模型.以双平行导线间的电磁干扰问题为实例,明确干扰要素,建立训练样本和测试样本,对比期望输出和预测输出之间的误差,结果表明该方法可以准确有效地进行电磁干扰预测.
推荐文章
用于电磁兼容预测的函数链神经网络
模糊测度
函数链神经网络
局部收敛
电磁兼容预测
基于PSO-RBF神经网络的海战场电磁态势预测
海战场
电磁态势
神经网络
粒子群算法
模拟退火法
遗传算法
基于神经网络的引信干扰信号对消
自适应干扰对消
神经网络
无线电引信
基于神经网络的网络时延预测
时延
FBF神经网络
Elman神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的电磁干扰的预测
来源期刊 北京航空航天大学学报 学科 工学
关键词 神经网络 模拟退火算法 遗传算法 电磁干扰
年,卷(期) 2013,(5) 所属期刊栏目
研究方向 页码范围 697-700,705
页数 5页 分类号 TN911.73
字数 3340字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马齐爽 北京航空航天大学自动化科学与电气工程学院 45 149 7.0 10.0
2 谢清明 中国航天科工集团公司飞航动力装置研究所 2 6 1.0 2.0
3 杨天鹏 北京航空航天大学自动化科学与电气工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (195)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (24)
二级引证文献  (12)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(3)
  • 参考文献(3)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(4)
  • 引证文献(3)
  • 二级引证文献(1)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(5)
  • 引证文献(1)
  • 二级引证文献(4)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
神经网络
模拟退火算法
遗传算法
电磁干扰
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京航空航天大学学报
月刊
1001-5965
11-2625/V
大16开
北京市海淀区学院路37号
1956
chi
出版文献量(篇)
6912
总下载数(次)
23
总被引数(次)
69992
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导