基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
首先介绍3种典型的用于翻译错误检测和分类的单词后验概率特征,即基于固定位置的词后验概率、基于滑动窗的词后验概率和基于词对齐的词后验概率,分析其对错误检测性能的影响;然后,将其分别与语言学特征如词性、词及由LG句法分析器抽取的句法特征等进行组合,利用最大熵分类器预测翻译错误,并在汉英NIST数据集上进行实验验证和比较.实验结果表明,不同的单词后验概率对分类错误率的影响是显著的,并且在词后验概率基础上加入语言学特征的组合特征可以显著降低分类错误率,提高译文错误预测性能.
推荐文章
融入双语最大名词短语的机器翻译模型
统计机器翻译
短语翻译模型
最大名词短语
双语最大名词短语
基于粘着性模糊规则的维汉机器翻译最大熵调序研究
维汉机器翻译
形态学
粘着性
模糊规则
最大熵
调序模型
基于现代智能识别技术的英语机器翻译模型
智能识别技术
英语翻译
机器翻译模型
结构歧义
最大熵
翻译准确度
汉语语言模型的规模对统计机器翻译系统的影响
n元语法
语言模型
基于短语的统计机器翻译系统
层次短语
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征比较和最大熵模型的统计机器翻译错误检测
来源期刊 北京大学学报(自然科学版) 学科 工学
关键词 错误检测 词后验概率 语言学特征 最大熵分类器
年,卷(期) 2013,(1) 所属期刊栏目 研究论文
研究方向 页码范围 81-87
页数 7页 分类号 TP391
字数 8198字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王莎 西安理工大学自动化与信息工程学院 4 3 1.0 1.0
2 杜金华 西安理工大学自动化与信息工程学院 7 83 2.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
错误检测
词后验概率
语言学特征
最大熵分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京大学学报(自然科学版)
双月刊
0479-8023
11-2442/N
16开
北京海淀北京大学校内
2-89
1955
chi
出版文献量(篇)
3152
总下载数(次)
8
总被引数(次)
52842
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导