基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将图像稀疏表示方法引入到交通图像处理中,实现了一种基于K-SVD的正交匹配追踪的交通图像去噪算法.该算法通过奇异值分解,DCT字典进行白适应更新,形成更能表示图像结构的超完备字典.实验结果表明,相对于传统图像增强方法(中值滤波、均值滤波、基于小波滤波)和基于DCT冗余字典的稀疏表示图像增强方法,该算法能更有效地去除交通图像噪声,得到更高的峰值信噪比.
推荐文章
一种基于稀疏表示的图像去噪算法
图像去噪
稀疏表示
小波变换
脊波变换
一种基于小波阈值函数的交通图像去噪算法
交通图像
小波分解与重构整数小波变换
GCV阈值函数
一种改进的组稀疏表示图像去噪方法
图像去噪
稀疏表示
相似性
纹理
一种基于低秩矩阵逼近的图像去噪算法
图像去噪
非局部自相似
低秩矩阵逼近
核范数
奇异值分解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于稀疏表示的交通图像去噪算法
来源期刊 大连交通大学学报 学科
关键词 交通图像 稀疏表示 图像去噪 峰值信噪比
年,卷(期) 2013,(5) 所属期刊栏目
研究方向 页码范围 107-111
页数 5页 分类号
字数 3516字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 贾世杰 大连交通大学电气信息学院 48 275 8.0 15.0
2 李艳彬 大连交通大学电气信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (54)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(8)
  • 参考文献(2)
  • 二级参考文献(6)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通图像
稀疏表示
图像去噪
峰值信噪比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连交通大学学报
双月刊
1673-9590
21-1550/U
大16开
大连市沙河口区黄河路794号
1980
chi
出版文献量(篇)
3012
总下载数(次)
3
总被引数(次)
12659
论文1v1指导