基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于生物启发特征的人脸识别算法.算法首先提取人脸图像的C1特征,然后利用PCA-LDA方法对其降维,最后,利用SVM进行识别.利用ORL人脸图像数据库对算法进行了验证,实验结果表明利用该方法可以得到很好的识别效果.
推荐文章
基于2D-PCA和2D-LDA的人脸识别方法
人脸识别
二维主分量分析
二维线性可分性分析
分类器融合
基于SVD和LDA的人脸识别方法
人脸识别
奇异值分解
线性鉴别分析
反向传播神经网络
基于LDA算法的人脸识别方法的比较研究
线性判别分析(LDA)
人脸识别
Eigenfaces
Fisherfaces
小样本问题
基于PCA的人脸识别方法的比较研究
PCA
人脸识别
2DPCA
PCA+2DPCA
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生物启发特征与PCA-LDA的人脸识别方法
来源期刊 河北工业大学学报 学科 工学
关键词 人脸识别 仿生特征 主成分分析 线性鉴别分析 支持向量机
年,卷(期) 2013,(5) 所属期刊栏目
研究方向 页码范围 80-83
页数 4页 分类号 TP391.4
字数 3032字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 穆国旺 河北工业大学理学院 28 175 8.0 12.0
2 睢佰龙 河北工业大学理学院 3 17 2.0 3.0
3 李国 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (15)
参考文献  (9)
节点文献
引证文献  (5)
同被引文献  (23)
二级引证文献  (18)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(6)
  • 引证文献(2)
  • 二级引证文献(4)
2017(6)
  • 引证文献(1)
  • 二级引证文献(5)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
人脸识别
仿生特征
主成分分析
线性鉴别分析
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北工业大学学报
双月刊
1007-2373
13-1208/T
大16开
天津市北辰区双口镇西平道5340号
1917
chi
出版文献量(篇)
3202
总下载数(次)
10
总被引数(次)
21785
论文1v1指导