本文围绕中国科学院深圳先进技术研究院认知技术研究中心自行研发的搭载有Kinect传感器的服务机器人操控平台,从Kinect传感器带来的彩色图像、深度图像和真三维点云信息中提取基于图像的2D和基于点云的3D特征,并将它们进行融合,作为待识别物体几何模型归类的依据,为手爪选择合适抓取姿态提供判断准则.同时结合人体示范学习框架(Learning from demonstration,LFD),研究了一种通过提高机器人的认知学习能力来完成人类生活环境中室内日常物品操控任务的方法,如:自行识别门把手的位置并完成开门动作,从橱柜中识别出目标物,抓取目标物体并送到指定目标地点等.最后,我们通过实验验证,该方法能够保证服务机器人成功抓取一些类似圆柱状、长方体等几何形态的物体并能在抓取之后顺利完成与周围环境进行交互过程中的轨迹规划这一复杂任务.