作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前的FCM类型的算法聚类数目的确定需要聚类原形参数的先验知识,否则算法就会产生误导.为了提高图像分割算法的抗噪性能,用K均值聚类算法简单、快速的优点对模糊C均值聚类算法进行改进.结合图像的邻域信息,对图像的直方图作均衡化处理,改善图像质量,通过自适应滤波,降低噪声对分割效果的影响.先用K均值聚类算法对图像进行分割,快速的获得较为准确的聚类中心和初次分割图像,避免了FCM算法中初始聚类中心选择不当造成的死点问题.用邻域灰度均值信息代替传统模糊C均值聚类算法中的灰度信息,对K均值聚类得到的图像作二次分割.该方法能更好的抑制噪声的干扰,提高了聚类算法的分割精确度.
推荐文章
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
基于邻域的模糊C-均值图像分割算法
模糊C-均值
图像分割
邻域
聚类
新的鲁棒模糊C-均值聚类分割算法及其应用
图像分割
模糊C-均值聚类
聚类中心表达式
划分系数
基于邻域的多尺度模糊C-均值聚类图像分割
邻域
多尺度
模糊C-均值聚类
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的基于模糊C-均值聚类的图像分割算法
来源期刊 哈尔滨商业大学学报(自然科学版) 学科 工学
关键词 模糊C-均值聚类 图像分割 空间邻域 灰度直方图 模糊聚类 K均值聚类
年,卷(期) 2013,(4) 所属期刊栏目 计算机与信息工程
研究方向 页码范围 457-461
页数 5页 分类号 TN911.73
字数 2871字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李伟 哈尔滨工程大学信息与通信工程学院 107 600 13.0 20.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (71)
参考文献  (7)
节点文献
引证文献  (4)
同被引文献  (11)
二级引证文献  (14)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(5)
  • 参考文献(3)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(2)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(5)
  • 引证文献(1)
  • 二级引证文献(4)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
模糊C-均值聚类
图像分割
空间邻域
灰度直方图
模糊聚类
K均值聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨商业大学学报(自然科学版)
双月刊
1672-0946
23-1497/N
大16开
哈尔滨市道里区通达街138号
1980
chi
出版文献量(篇)
3911
总下载数(次)
16
总被引数(次)
20147
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导