基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于预测特征提取与退化状态评估直接关系故障预测可信性,结合数学形态学与信息熵理论,针对电机滚动轴承,提出基于多尺度形态分解谱熵的预测特征提取方法,用灰色关联分析对退化状态进行评估.对不同损伤程度轴承振动信号进行多尺度形态分解,分别计算其在不同尺度域内的复杂性度量能谱熵、奇异谱熵,以其作为预测特征向量.建立标准退化模式矩阵,对待检测样本信号特征向量与标准模式进行灰色关联分析,据关联度大小对样本信号退化状态进行评估.并仿真与实例数据验证该方法对电机轴承退化状态评估的有效性.
推荐文章
基于EEMD和多元多尺度熵的风力发电机组滚动轴承故障特征提取
风力发电机组
滚动轴承
特征提取
EEMD
多元多尺度熵
基于多尺度形态学与奇异值分解的滚动轴承故障特征提取
多尺度
形态差值滤波器
特征能量比
奇异值分解
差分谱
形态梯度解调在电机轴承故障特征提取中的应用研究
形态梯度解调
轴承
电机
特征提取
基于局部特征尺度分解与基本尺度熵的轴承故障诊断
局部特征尺度分解
基本尺度熵
相空间重构
多尺度
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度形态分解谱熵的电机轴承预测特征提取及退化状态评估
来源期刊 振动与冲击 学科 工学
关键词 电机 轴承 性能退化 多尺度形态分解 谱熵 灰色关联分析
年,卷(期) 2013,(22) 所属期刊栏目
研究方向 页码范围 124-128,139
页数 6页 分类号 TH165|TN911
字数 3941字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李洪儒 81 640 11.0 22.0
2 王冰 11 46 4.0 6.0
3 许葆华 44 316 10.0 16.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电机
轴承
性能退化
多尺度形态分解
谱熵
灰色关联分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
振动与冲击
半月刊
1000-3835
31-1316/TU
大16开
上海市华山路1954号上海交通大学
4-349
1982
chi
出版文献量(篇)
12841
总下载数(次)
12
总被引数(次)
124504
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导