基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
核主成分分析(KPCA)没有充分利用人脸的对称性特征,在人脸识别中缺少训练样本,致使其识别率较低.为此,提出一种对称KPCA算法.利用人脸的镜像对称性,通过对训练样本进行镜像变换,得到奇对称样本和偶对称样本,分别提取各奇/偶对称样本的特征分量,使用最近邻距离分类器完成分类.实验结果表明,该算法能扩大样本容量,当多项式阶数为2时,该算法的识别率高于KPCA算法,识别时间短于KPCA算法.
推荐文章
基于主成分分析方法的人脸识别研究
人脸识别
主成分分析
欧几里得距离
基于特征脸的主成分分析人脸识别
人脸识别
特征脸
主成分分析
改进的主成分分析和最近邻的人脸识别方法
人脸识别
主成分分析
奇异值分解
聚类分析
最近邻分类
主成分分析与BP神经网络的人脸识别方法研究
主成分分析
BP神经网络
人脸识别
BioID人脸数据库
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 对称核主成分分析及其在人脸识别中的应用
来源期刊 计算机工程 学科 工学
关键词 人脸识别 支持向量机 特征提取 镜像对称性 主成分分析 核主成分分析
年,卷(期) 2013,(3) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 174-177,181
页数 5页 分类号 TP391
字数 4067字 语种 中文
DOI 10.3969/j.issn.1000-3428.2013.03.034
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张贵仓 西北师范大学计算机科学与工程学院 94 658 12.0 21.0
2 杨林英 西北师范大学计算机科学与工程学院 3 17 2.0 3.0
3 何振学 西北师范大学计算机科学与工程学院 4 16 2.0 4.0
4 谯钧 西北师范大学计算机科学与工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (187)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(6)
  • 参考文献(0)
  • 二级参考文献(6)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(1)
  • 二级参考文献(4)
1998(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
支持向量机
特征提取
镜像对称性
主成分分析
核主成分分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导