机械故障与润滑油的性状具有紧密关系.因此,研究一种能够快速、无损对润滑油品牌识别方法至关重要.该研究应用近红外光谱分析法结合偏最小二乘判别分析(Partial Least Squares-Discriminant Analysis,PLS-DA)模式识别方法对7种润滑油品牌进行识别.研究结果表明,采用近红外光谱结合PLS-DA方法对校正样本建立判别模型,模型的校正相关系数均大于0.980,校正集均方根误差(RMSEC)和预测集均方根误差(RMSEP)都小于0.062,对7种润滑油品牌识别率均为100%.结合遗传算法对变量进行筛选,选出62个波数点代替全波段进行建模,模型对未知样本的识别率均为98.1%,大大缩减建模的计算量,为在润滑油判别分析仪器开发方面提供一定的理论指导.