基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前中文文本分类算法大多利用词语或词语映射为特征项的分类方式,未考虑中文语法语义的特点,导致分类性能较低.为此,提出中文文本的意群分类算法.通过中文依存句法分析结果制定规则提取意群,并作为特征项表示文本,进而采用支持向量机的方法对训练集进行学习,最终构建类别意群库对测试文本进行分类.实验结果表明,与基于词语的分类方法相比,意群分类算法在分类性能上平均提升3个百分点,平均查准率达到97%.
推荐文章
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
中文文本分类系统的设计与实现
文本分类
向量空间模型
特征项选择
权重
基于AdaBoost-Bayes算法的中文文本分类系统
中文分词
文本分类
AdaBoost
Bayes
基于类别特征向量表示的中文文本分类算法
中文文本分类
向量空间模型
评价函数
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 中文文本的意群分类算法
来源期刊 计算机工程 学科 工学
关键词 文本分类 意群 支持向量机 语义概念 依存句法 类别意群库
年,卷(期) 2013,(8) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 204-207,214
页数 5页 分类号 TP301.6
字数 4375字 语种 中文
DOI 10.3969/j.issn.1000-3428.2013.08.044
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 易军凯 北京化工大学信息科学与技术学院 44 107 6.0 7.0
2 李志彤 北京化工大学信息科学与技术学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (698)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(12)
  • 参考文献(0)
  • 二级参考文献(12)
2004(9)
  • 参考文献(2)
  • 二级参考文献(7)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(4)
  • 参考文献(3)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
意群
支持向量机
语义概念
依存句法
类别意群库
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导