基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高国画检索效率,应用SVM算法对鞍马画、花鸟画、人物画、竹子画和山水画等国画进行分类。首先通过对收集的国画样本进行预处理;其次,利用人眼对颜色的划分特点,把RGB模式图像转化为HSV模式,对其H、S、V分量进行非等间隔量化,组成一维特征向量,同时结合惯性比形成图像颜色特征信息,使用灰度共生矩阵算法获取纹理特征信息;最后,通过对比网格搜索、遗传算法(GA)、粒子群算法(PSO)的参数寻优方法,应用网格搜索法对国画图像进行分类,并对比了BP神经网络和判别分析算法的分类效果,SVM的正确率高达97%以上,试验结果表明SVM在国画分类应用是有效和可行的。
推荐文章
SVM用于基于块划分特征提取的图像分类
图像划分
特征矢量聚类
支持向量机(SVM)
图像分类
图像检索
中国画的特征提取及分类
国画图像
特征提取
支持向量机
语义分类
基于多特征提取和SVM分类器的木材显微识别
多特征提取
支持向量机
小规模数据
识别分类
木材显微细胞
基于Gabor、Fisher脸多特征提取及集成SVM的人脸表情识别
表情识别
改进的弹性模板
Gabor小波变换
Fisher脸
集成支持向量机
分类器级联
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 国画特征提取及SVM分类的应用
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 灰度共生矩阵 惯性比 SVM分类 特征提取
年,卷(期) 2013,(10) 所属期刊栏目
研究方向 页码范围 6398-6401
页数 4页 分类号 TP311
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 詹明君 广东工业大学应用数学学院 7 7 2.0 2.0
2 黎宇帆 广东工业大学应用数学学院 3 1 1.0 1.0
3 陈静旋 广东工业大学应用数学学院 3 1 1.0 1.0
4 蓝海友 广东工业大学应用数学学院 2 1 1.0 1.0
5 杨敏之 广东工业大学应用数学学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
灰度共生矩阵
惯性比
SVM分类
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导