提出一种联合灰色模型(Grey Model,GM)和最小二乘支持机(Least-Squares Support Vector Machines,LS-SVM)回归算法的卫星钟差智能组合预报方法.首先根据历史钟差数据建立不同的GM(1,1)灰色模型,然后利用这些模型进行钟差预报,最后采用最小二乘支持向量机回归算法对不同GM(1,1)模型的预报结果进行非线性组合,以获得最终预报值.该方法在充分利用灰色模型所需原始数据少、建模简单等优点的基础上,结合最小二乘支持向量机所具有的小样本、非线性、泛化能力强等特性,提高了预报可靠性和精度.实例验证了该组合方法的可行性、有效性和实用性.