基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对粒子滤波跟踪过程中不精确的状态模型或观测模型会降低跟踪精度的问题,提出一种基于粒子滤波与在线随机森林分类的目标跟踪算法框架,通过在线样本学习,随机森林中的样本集可以准确地近似目标外观的概率分布;在粒子滤波跟踪中,采用随机森林分类结果及区域直方图相似度来估计粒子相似度,从而提高了观测模型的精度.当出现跟踪漂移时,通过随机森林检测目标来重新初始化粒子滤波器,可以防止由于误差积累而造成的跟踪失败.采用vc 6.0+ opencv实现了本算法,并设计两类试验分别来验证算法的跟踪精度和抗漂移能力.结果表明,该算法跟踪正确率比粒子滤波提高23%,比随机森林提高16%,因此可以防止无规则运动等因素造成的跟踪漂移,实现了长序列可靠跟踪.
推荐文章
基于粒子群优化粒子滤波的目标跟踪方法
粒子滤波
粒子群优化
均值漂移
有效粒子数
重采样
基于粒子滤波和在线学习的目标跟踪
粒子滤波
在陑学习
随机蕨
目标跟踪
二维二值模式
巴氏距离
基于粒子群改进粒子滤波的机动目标跟踪方法
粒子滤波
粒子群优化
机动飞行
跟踪
基于二值随机森林的目标跟踪算法
二值描述符
随机森林
汉明匹配
姿态变化
视觉跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子滤波和在线随机森林分类的目标跟踪
来源期刊 江苏大学学报(自然科学版) 学科 工学
关键词 粒子滤波 随机森林 在线学习 运动跟踪 观测模型
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 207-213
页数 7页 分类号 TP391.41
字数 5021字 语种 中文
DOI 10.3969/j.issn.1671-7775.2014.02.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭小宁 中南大学信息科学与工程学院 68 349 8.0 15.0
3 陈姝 湘潭大学信息工程学院 16 54 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (68)
参考文献  (8)
节点文献
引证文献  (11)
同被引文献  (14)
二级引证文献  (7)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(3)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(4)
  • 引证文献(4)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(3)
  • 二级引证文献(1)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
粒子滤波
随机森林
在线学习
运动跟踪
观测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏大学学报(自然科学版)
双月刊
1671-7775
32-1668/N
大16开
江苏省镇江市梦溪园巷30号
28-83
1980
chi
出版文献量(篇)
2980
总下载数(次)
2
总被引数(次)
31026
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导