基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基本粒子滤波算法存在的粒子退化问题,提出了一种基于广义回归神经网络(GRNN)的重要性样本调整的粒子滤波算法.利用广义回归神经网络优化从重要性密度函数采样的样本,将样本作为神经网络的输入,以观测值作为神经网络的目标向量,通过多次训练优化光滑因子逼近目标向量,用样本值和其周围的调整值作为训练后神经网络的输入向量,通过神经网络的输出向量指示用最优点来取代样本值.利用GRNN对样本进行调整,使得样本更接近于后验概率密度.仿真结果表明:基于广义回归神经网络的粒子滤波算法的性能在有效粒子数和均方误差参数方面优于基本粒子滤波算法,在改善滤波精度方面取得了较好的效果,验证了广义回归神经网络在粒子滤波算法中是可用的和有效的.
推荐文章
基于粒子滤波神经网络的倒立摆控制系统
倒立摆
粒子滤波
神经网络
基于广义回归神经网络的流量矩阵估计
流量矩阵估计
网络流量
广义回归神经网络
马氏距离
基于广义回归网络的动态权重回归型神经网络集成方法研究
神经网络集成
BP网络
动态权重
广义回归神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于广义回归神经网络的粒子滤波算法研究
来源期刊 沈阳航空航天大学学报 学科 工学
关键词 粒子滤波 神经网络 粒子退化 广义回归神经网络
年,卷(期) 2014,(6) 所属期刊栏目 电信工程
研究方向 页码范围 54-58
页数 5页 分类号 TN911
字数 3198字 语种 中文
DOI 10.3969/j.issn.2095-1248.2014.06.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王尔申 沈阳航空航天大学电子信息工程学院 80 425 10.0 17.0
2 张芝贤 沈阳航空航天大学电子信息工程学院 51 201 7.0 11.0
3 李兴凯 沈阳航空航天大学电子信息工程学院 4 23 4.0 4.0
4 庞涛 沈阳航空航天大学电子信息工程学院 49 279 9.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (191)
参考文献  (12)
节点文献
引证文献  (5)
同被引文献  (19)
二级引证文献  (4)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1955(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(11)
  • 参考文献(2)
  • 二级参考文献(9)
2003(9)
  • 参考文献(0)
  • 二级参考文献(9)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(9)
  • 参考文献(0)
  • 二级参考文献(9)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(5)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
粒子滤波
神经网络
粒子退化
广义回归神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳航空航天大学学报
双月刊
2095-1248
21-1576/V
大16开
辽宁省沈阳市沈北新区道义南大街37号
1984
chi
出版文献量(篇)
2881
总下载数(次)
10
总被引数(次)
11933
论文1v1指导