作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电信行业客户流失预测问题的复杂性,本文将能够处理大规模数据、容噪性能较好的组合分类器算法——随机森林方法应用于电信行业的客户流失预测中.针对影响组合分类器性能的关键指标——差异度,提出了一种新的基于随机森林相似度矩阵的差异度测度,并在此基础上提出了一种改进的组合剪枝技术,对随机森林的基分类器进行剪枝,得到规模较小但泛化性能更优的基于剪枝随机森林的客户流失预测模型.实验结果表明,与其他方法相比,新的差异度测度方法更好地描述单个分类器之间的差异度,本文提出的基于剪枝随机森林的客户流失预测模型具有更高的预测准确率、更小的组合分类器规模和更好的效率,有望成为该领域一种可行且有效的方案.
推荐文章
电信客户流失的组合预测模型
客户流失
预测模型
电信企业
决策树C5.0
BP神经网络
Logistic回归算法
基于改进聚类的电信客户流失预测分析
聚类
客户流失
加权
预测分析
基于随机森林和单类支持向量机的电信行业客户流失预测
客户流失预测
随机森林
转导推理
单类支持向量机
基于代价敏感SVM的电信客户流失预测研究
客户流失
支持向量机
非平衡数据
代价敏感
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于剪枝随机森林的电信行业客户流失预测
来源期刊 厦门大学学报(自然科学版) 学科 工学
关键词 客户流失预测 随机森林 组合分类器 剪枝技术
年,卷(期) 2014,(6) 所属期刊栏目
研究方向 页码范围 817-823
页数 7页 分类号 TP181
字数 6583字 语种 中文
DOI 10.6043/j.issn.0438-0479.2014.06.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邱一卉 厦门理工学院管理学院 4 40 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (48)
参考文献  (11)
节点文献
引证文献  (14)
同被引文献  (22)
二级引证文献  (11)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(2)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2019(10)
  • 引证文献(4)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
客户流失预测
随机森林
组合分类器
剪枝技术
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
厦门大学学报(自然科学版)
双月刊
0438-0479
35-1070/N
大16开
福建省厦门市厦门大学囊萤楼218-221室
34-8
1931
chi
出版文献量(篇)
4740
总下载数(次)
7
总被引数(次)
51714
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导