基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对压缩跟踪算法中表观模型的视觉表达特征单一、统计模型缺乏柔性的问题,提出一种自适应的多特征表观建模方法.该方法引入了对梯度、边缘等图像细节描述能力更强的Surf特征,并通过构建两级观测矩阵解决多维特征的观测问题,与亮度特征进行融合,使视觉表达更加丰富、全面;通过计算正负样本特征所服从的概率分布曲线的Hellinger距离,分析特征对目标和背景的区分能力,自适应地调整统计模型中各特征之间的权重,使统计模型能更好地利用对目标跟踪有益的信息,根据目标和背景的变化及时进行更新.实验结果表明:该自适应多特征表观模型能更加准确地描述实际场景中目标和背景的复杂变化,在保持高效率的同时,极大地提高了跟踪算法的鲁棒性和准确性.
推荐文章
自适应模型更新的多特征融合目标跟踪算法
目标跟踪
特征融合
粒子滤波
自适应观测模型
高斯方差
基于模糊推理的自适应交互多模型目标跟踪算法
IMM算法
模糊
'当前'统计模型
机动目标跟踪
基于双模型融合的自适应目标跟踪算法
目标跟踪
相关滤波
HS直方图
尺度金字塔
自适应融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应多特征表观模型的目标压缩跟踪
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 压缩感知 目标跟踪 自适应模型 多特征表观模型
年,卷(期) 2014,(12) 所属期刊栏目 计算机技术
研究方向 页码范围 2132-2138,2171
页数 8页 分类号 TP242.6
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2014.12.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (80)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
压缩感知
目标跟踪
自适应模型
多特征表观模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导