基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对已有的单幅图像超分辨率重建算法大都无法同时兼顾重建质量和运算速度的问题,提出了基于二维经验模态分解的单幅图像超分辨率重建算法.首先用二维经验模态分解法将一幅低分辨率图像分解为不同复杂程度的图层;然后对包含高频细节信息的第一个图层用改进核岭回归法重建,以保证重建质量;对包含较少信息的后几个图层用双三次插值法重建,以提高重建速度;最后用二维经验模态分解逆变换将重建后的各层图像合成一幅完整的高分辨率图像.实验结果表明该算法充分结合了三者的优势,在保证重建图像质量的同时,提高了算法的运算速度.
推荐文章
改进的单幅图像自学习超分辨率重建方法
单幅图像超分辨率
L2范数
协作表示
支持向量回归
深度学习下的高效单幅图像超分辨率重建方法
深度学习
超分辨率重建
卷积神经网络
亚像素卷积
风格转移
基于二维稀疏表示的人脸超分辨率重构算法
人脸超分辨率
局部分块
二维稀疏表示
二维K-SVD
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二维经验模态分解的单幅图像超分辨率重建
来源期刊 郑州大学学报(工学版) 学科 工学
关键词 超分辨率重建 二维经验模态分解 改进核岭回归 双三次插值
年,卷(期) 2014,(5) 所属期刊栏目 计算机与控制工程
研究方向 页码范围 15-18
页数 4页 分类号 TP311
字数 2549字 语种 中文
DOI 10.3969/j.issn.1671-6833.2014.05.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毛晓波 郑州大学电气工程学院 55 913 15.0 29.0
2 张志超 郑州大学电气工程学院 3 29 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (124)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (11)
二级引证文献  (0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率重建
二维经验模态分解
改进核岭回归
双三次插值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
双月刊
1671-6833
41-1339/T
大16开
河南省郑州市科学大道100号
36-232
1980
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导