基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决传统最小二乘支持向量机(LSSVM)采用交叉验证确定参数耗时较长和粒子群(Particle Swarm Optimization,PSO)优化算法早熟收敛的问题,提出一种基于种群活性PSO算法优化LSSVM参数的方法.利用群活性加速度作为多样性测度,当群活性加速下降时,对粒子的位置和速度分别执行进化和变异操作来改进标准PSO算法,然后分析上海市时用水量序列特点及其影响因素,选取影响程度较大的主要因素,将其作为预测模型的输入变量,建立时用水量预测模型;最后采用改进的PSO算法优化LSSVM参数来预测上海市时用水量.实例分析表明,对比文中其他3种模型输入变量组合,选取的预测模型输入变量能够更有效地提高预测精度;与传统LSSVM方法相比,提出的基于改进PSO-LSSVM的时用水量预测方法计算速度更快,预测精度更高.
推荐文章
基于聚类PSO-LSSVM模型的PAD维度预测
情感维度PAD
最小二乘支持向量机
粒子群优化算法
情感聚类分析
基于混沌理论的城市用水量预测研究
混沌
城市用水量
时间序列
神经网络
基于混合核函数PSO-LSSVM的边坡变形预测
边坡
边坡变形预测
最小二乘支持向量机
粒子群优化
混合核
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-LSSVM的城市时用水量预测
来源期刊 控制工程 学科 工学
关键词 粒子群算法 最小二乘支持向量机 时用水量预测
年,卷(期) 2014,(2) 所属期刊栏目 过程控制技术及应用
研究方向 页码范围 232-236
页数 5页 分类号 TP27
字数 6047字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王景成 上海交通大学自动化系系统控制与信息处理教育部重点实验室 61 580 14.0 21.0
2 仇军 上海交通大学自动化系系统控制与信息处理教育部重点实验室 1 21 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (330)
参考文献  (8)
节点文献
引证文献  (21)
同被引文献  (125)
二级引证文献  (39)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(5)
  • 引证文献(4)
  • 二级引证文献(1)
2017(4)
  • 引证文献(4)
  • 二级引证文献(0)
2018(14)
  • 引证文献(3)
  • 二级引证文献(11)
2019(24)
  • 引证文献(5)
  • 二级引证文献(19)
2020(11)
  • 引证文献(3)
  • 二级引证文献(8)
研究主题发展历程
节点文献
粒子群算法
最小二乘支持向量机
时用水量预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制工程
月刊
1671-7848
21-1476/TP
大16开
沈阳东北大学310信箱
8-216
1994
chi
出版文献量(篇)
5468
总下载数(次)
9
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导