原文服务方: 计算机应用研究       
摘要:
资源均衡优化问题属于NP-Hard问题,为了能对其高效地进行求解,提出了一种新的克隆布谷鸟算法。该算法首先根据个体适应度自适应地克隆,实现种群的扩张;然后通过Levy变异实现克隆种群的更新;最后去重以及全局择优策略保留最优个体且增加种群多样性;引入非均匀变异算子均衡算法全局均匀搜索能力和局部求精能力。通过对实例进行测试,结果表明克隆布谷鸟算法在求解资源均衡优化问题上比粒子群、差分和标准布谷鸟算法具有更优的全局优化性能。
推荐文章
基于改进布谷鸟算法的分数低阶盲均衡算法
分数低阶盲均衡
脉冲噪声
布谷鸟算法
椋鸟群行为
基于混沌序列的布谷鸟算法改进
布谷鸟算法
Lévy飞行
混沌序列
收敛性能
基于蚁群算法优化的布谷鸟搜索算法
Levy飞行
布谷鸟搜索算法
蚁群优化算法
鸟巢位置更新策略
基于Powell局部搜索策略的全局优化布谷鸟算法
布谷鸟搜索算法
莱维飞行
Powell局部搜索策略
全局优化
函数优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于克隆布谷鸟算法的资源均衡优化
来源期刊 计算机应用研究 学科
关键词 克隆布谷鸟算法 Levy变异 非均匀变异 资源均衡优化
年,卷(期) 2014,(5) 所属期刊栏目 算法研究探讨
研究方向 页码范围 1324-1327
页数 4页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2014.05.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (48)
参考文献  (11)
节点文献
引证文献  (6)
同被引文献  (17)
二级引证文献  (6)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(4)
  • 参考文献(3)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(5)
  • 引证文献(5)
  • 二级引证文献(0)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
克隆布谷鸟算法
Levy变异
非均匀变异
资源均衡优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导