基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着互联网和信息技术的迅速发展,网络上用户的评论信息越来越多。利用计算机技术分析网络中大规模文本的情感倾向,在政府的舆情分析和企业的产品评价智能回馈等应用中有着非常巨大的发展前景。文中着重研究了选取不同的文本特征对文本情感倾向性分类精度的影响。实验中所研究的不同文本特征主要包括情感词、形容词、副词、语气词和标点符号等。实验结果表明,选取情感词、形容词、副词作为特征项对情感分类具有较好的效果,在此基础上添加语气词和标点特征可以有效地提高情感分类的精度。该研究成果可用于社会舆情分析、垃圾博客过滤、商品评论与推荐、影视评价等领域。
推荐文章
基于主题情感句的汉语评论文倾向性分析
主题情感句
评论文
倾向性分析
情感
意见领袖识别中的文本倾向性研究
意见领袖识别
倾向性分析
影响力扩散概率模型
基于关键句分析的微博情感倾向性研究
情感分析
倾向性分析
关键句
依存句法分析
观点挖掘
基于语义的微博短文本倾向性分析研究
微博
情感倾向
语义相似度
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向情感倾向性识别的特征分析研究
来源期刊 计算机技术与发展 学科 工学
关键词 情感分析 文本分类 特征选取 支持向量机
年,卷(期) 2014,(9) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 33-36
页数 4页 分类号 TP31
字数 4360字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.09.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘功申 上海交通大学信息安全工程学院 97 848 14.0 25.0
2 许歆艺 上海交通大学信息安全工程学院 3 16 3.0 3.0
3 李妍坊 上海交通大学信息安全工程学院 2 14 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (111)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (13)
二级引证文献  (4)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
情感分析
文本分类
特征选取
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导