基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于视觉低层特征与高层语义间存在“语义鸿沟”,基于内容的检索算法难以找到满足用户要求的图像,为了提高图像检索准确率,提出一种基于布谷鸟搜索算法的相关反馈图像检索方法(MCS).首先分别提取图像的颜色、纹理、形状特征.然后根据用户的反馈信息,采用布谷鸟搜索算法动态调整特征的权值,从而建立满足用户实际偏好的图像相似度模型.最后采用仿真实验测试MCS的有效性.结果表明,相对于遗传算法、粒子群算法以及传统图像检索算法,MCS算法不仅提高了图像检索准确度,同时加快了图像检索效率,更好地满足图像检索要求.
推荐文章
基于粒子群算法的布谷鸟搜索算法
布谷鸟搜索
Levy飞行
粒子群优化算法
基于高斯扰动的布谷鸟搜索算法
布谷鸟搜索算法
高斯扰动
收敛速度
基于布谷鸟搜索改进的聚类算法
聚类
k-means算法
布谷鸟搜索算法
收敛速度
全局最优
云模型的布谷鸟搜索算法
布谷鸟搜索算法
云模型
云模型的布谷鸟搜索算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进布谷鸟搜索算法的相关反馈图像检索
来源期刊 电视技术 学科 工学
关键词 图像检索 相关反馈 特征权值 布谷鸟搜索算法
年,卷(期) 2014,(3) 所属期刊栏目 数字视频
研究方向 页码范围 39-42
页数 4页 分类号 TN911.73|TP391
字数 3517字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张爱科 35 119 6.0 9.0
2 符保龙 40 171 8.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (54)
参考文献  (8)
节点文献
引证文献  (5)
同被引文献  (13)
二级引证文献  (4)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(5)
  • 引证文献(3)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像检索
相关反馈
特征权值
布谷鸟搜索算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电视技术
月刊
1002-8692
11-2123/TN
大16开
北京市朝阳区酒仙桥北路乙7号(北京743信箱杂志社)
2-354
1977
chi
出版文献量(篇)
12294
总下载数(次)
21
总被引数(次)
42632
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导