基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于学习的超分辨率算法利用样本先验信息重建高分辨率图像,在遥感、刑侦和医学图像领域有着广泛应用。论文分析了前沿的基于稀疏表达的图像超分辨率算法,实现了该算法功能,为了便于基于稀疏表达超分辨率算法的应用,论文设计并实现了基于对话框和参数调节控件的图像超分辨率算法框架,实验结果表明论文实现的算法框架具有良好的可用性和拓展性。
推荐文章
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
基于稀疏贝叶斯估计的单图像超分辨率算法
单图像超分辨率
超分辨率
贝叶斯估计
回归
稀疏表示
基于稀疏表示的自适应图像超分辨率重建算法
超分辨率
自适应正则化
联合字典
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表达的图像超分辨率算法实现*
来源期刊 计算机与数字工程 学科 工学
关键词 图像超分辨率 稀疏表达 算法实现
年,卷(期) 2014,(11) 所属期刊栏目 图像处理
研究方向 页码范围 2160-2163
页数 4页 分类号 TP391
字数 2531字 语种 中文
DOI 10.3969/j.issn1672-9722.2014.11.039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢涛 武汉工程大学计算机院智能机器人湖北省重点实验室 20 37 4.0 5.0
2 万永静 武汉工程大学计算机院智能机器人湖北省重点实验室 3 14 2.0 3.0
3 肖杰 武汉工程大学计算机院智能机器人湖北省重点实验室 2 10 2.0 2.0
4 张东 武汉工程大学计算机院智能机器人湖北省重点实验室 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (23)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (5)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像超分辨率
稀疏表达
算法实现
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导