原文服务方: 现代电子技术       
摘要:
利用NSCT变换具有多尺度和平移不变性,能够稀疏地表示纹理图像的特点,将具有丰富纹理信息的人体脑部核磁共振(MR)图像,从空间域变换到频率域表示。提取变换后表征图像特性的低频子带均值、方差及高频16个方向子带能量作为特征向量,输入SVM分类器进行分类识别。实验结果表明该方法对非病变脑部MR图像识别准确率达到100%,病变脑部MR图像的识别率达到90.90%,综合识别率达到95.45%。且该方法提取的特征维数少,识别速度快,识别率高,能够快速区分病变与非病变脑部MR图像。
推荐文章
基于NSCT和支持向量机的SAR图像识别
图像识别
合成孔径雷达
非下采样轮廓波变换
支持向量机
基于Hadoop平台下SVM的图像识别技术
Hadoop平台
图像识别
SVM
云计算
加速比
EMD-SVM在纹理图像识别中的应用
经验模式分解
支持向量机
固有模式函数
纹理识别
基于Hadoop平台的图像识别
字符识别
Hadoop平台
图像识别
数据交换时间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于NSCT和SVM的脑MRI医学图像识别
来源期刊 现代电子技术 学科
关键词 NSCT 脑部MR图像 纹理特征 支持向量机
年,卷(期) 2014,(12) 所属期刊栏目 计算机应用技术 -- 科学计算与信息处理
研究方向 页码范围 63-66,69
页数 5页 分类号 TN919-34|TP391.41
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 葛玉荣 中国海洋大学信息科学与工程学院 14 64 5.0 7.0
2 徐楠楠 中国海洋大学信息科学与工程学院 2 5 1.0 2.0
3 王佳奕 中国海洋大学信息科学与工程学院 2 20 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (18)
参考文献  (11)
节点文献
引证文献  (4)
同被引文献  (7)
二级引证文献  (1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(3)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(4)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NSCT
脑部MR图像
纹理特征
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导