基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人脸识别技术是让机器具有人的智能,可以记忆、辨认人的一种前沿技术。它结合了计算机图形学,计算机图象处理和模式识别等多种学科领域。本文研究本文提出一种基于小波包和PCA变换相结合的特征及融合人脸识别方法,首先对人脸图像进行二维小波包分解,对融合后的高频子图再进行PCA分解,得低频主分量,足后对高低频主分量进行融合处理,得最终的鉴别特征。分别在ORL和YaleA人脸库上进行试验,试验结果表明该方法提高了识别率。
推荐文章
基于局部小波变换与DCT的人脸识别算法
人脸识别
小波变换
离散余弦变换
基于模糊增强和小波包变换的人脸识别方法
人脸识别
人脸光照补偿
图像模糊增强
小波包
基于频谱的人脸识别方法
人脸识别
本征脸
LDA
频谱脸
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波变换的人脸识别方法
来源期刊 电子世界 学科
关键词 小波包分解特征融合 PCA
年,卷(期) 2014,(4) 所属期刊栏目 学术交流
研究方向 页码范围 201-201,202
页数 2页 分类号
字数 4274字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚竹亭 中北大学机械工程与自动化学院 88 363 9.0 15.0
2 叶超 中北大学机械工程与自动化学院 3 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (24)
参考文献  (4)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (2)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(9)
  • 参考文献(0)
  • 二级参考文献(9)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波包分解特征融合
PCA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子世界
半月刊
1003-0522
11-2086/TN
大16开
北京市
2-892
1979
chi
出版文献量(篇)
36164
总下载数(次)
96
总被引数(次)
46655
论文1v1指导