基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高农业机械化水平、农业生产效率和优化农业产业结构,保证在农业机械生产与实际需求的一致性,在制订农业机械化水平发展规划过程中需要对农业机械数量进行预测。为此,采用基于遗传算法的 BP 神经网络预测算法,对我国从1997-2013年期间以农机总动力、中大型拖拉机数量和小型拖拉机数量为内容的主要农业装备数量进行预测。预测结果表明,利用遗传算法与 BP 神经网络相结合的方法预测全国农业机械装备数量,农机总动力预测值与绝对值平均误差为1.080%、农用大中型拖拉机数量预测值与绝对值平均误差为1.352%、小型拖拉机数量预测值与绝对值平均误差为1.765%,预测精度稳定,该预测方法适用于本时间序列预测问题。
推荐文章
基于灰色BP神经网络的农业机械总动力预测
灰色预测模型
BP神经网络
预测
农业机械总动力
基于BP神经网络技术的网络时延预测研究
时延预测
基函数中心
Matlab仿真
BP神经网络
基于 BP 神经网络的农业机械化作业水平预测
农业机械化作业水平
BP神经网络
组合预测模型
基于BP神经网络的表面硬度预测模型
BP神经网络
激光相变硬化
扫描参数
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于 BP 神经网络的农业机械数量预测
来源期刊 农机化研究 学科 农学
关键词 BP神经网络 预测 农业机械 遗传算法
年,卷(期) 2015,(3) 所属期刊栏目 理论研究
研究方向 页码范围 11-14
页数 4页 分类号 TP183|S232.9
字数 2752字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王笑岩 朝阳师范高等专科学校数学计算机系 10 44 4.0 6.0
2 王石 沈阳工程学院机械学院 8 25 3.0 5.0
3 周琪 渤海大学数理学院 6 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (112)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (6)
二级引证文献  (6)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(10)
  • 参考文献(1)
  • 二级参考文献(9)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(12)
  • 参考文献(0)
  • 二级参考文献(12)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
BP神经网络
预测
农业机械
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农机化研究
月刊
1003-188X
23-1233/S
大16开
黑龙江哈尔滨市哈平路156号
14-324
1979
chi
出版文献量(篇)
14318
总下载数(次)
39
总被引数(次)
94283
论文1v1指导