针对数据场环境下多维数据的低维特征提取问题,本文将数据之间的相互作用纳入其相关性求解中,提出一种基于数据场的典型相关分析(Data field based canonical correlation analysis, DFCCA)方法。 DFCCA提取的特征具有良好的分布特性,原空间上相隔较远的数据点对的特征聚集在一个较小区域内,而相邻数据点对的特征却有规律地分布在其他点所聚集区域的周围。此特性使得DFCCA具有较好的边界辨识能力,将其应用于图像分割的实验结果表明, DFCCA提取的复杂图像边界具有较好的保真度。