基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K PC A是重要的非线性特征提取的人脸识别方法,但对较大规模训练数据库,会因核矩阵 K过大,计算代价高而不能有效实现,并且使用传统欧式距离度量很难大幅提升识别率。本研究提出了将基于QR分解的PCA推广到KPCA上且应用 p范数度量来解决这一问题的方法,即:首先采用选主元的Cholesky分解得到核矩阵K的低秩近似,然后对小规模矩阵 H进行QR分解,经过一些推导得到中心化核矩阵的特征向量,实现了KPCA的非线性特征提取,在分类识别阶段,本研究突破传统欧氏距离度量的局限,将 p范数作为度量相似性的方法,在O RL和A R人脸数据库中做了大量相关实验,并且分别研究了 p的取值对基于QR分解的主成分分析(QR‐PCA )和核主成分分析(QR‐KPCA)算法的识别率的影响,实验结果表明,这种 p范数意义下的QR‐KPCA处理人脸识别问题有很高的识别率。
推荐文章
基于QR分解与2DLDA的单样本人脸识别
虚拟图像
单样本
二维线性判别分析
QR分解
正则迹范数在人脸识别中的应用
人脸识别
迹范数
分类
稀疏
聚集
图像处理
基于加权KPCA和融合极限学习机的人脸识别
人脸识别
WKPCA
鉴别矩阵
ELM
特征融合
人脸图像
基于稀疏表示的快速l2-范数人脸识别方法
人脸识别
稀疏表示
特征融合
字典缩减
正则化最小二乘法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于p范数的QR-KPCA人脸识别算法
来源期刊 西安理工大学学报 学科 工学
关键词 特征提取 主成分分析 核主成分分析 QR分解
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 100-105
页数 6页 分类号 O29|TB112
字数 4494字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周水生 西安电子科技大学数学与统计学院 40 295 10.0 15.0
2 穆新亮 西安电子科技大学数学与统计学院 4 33 4.0 4.0
3 郑颖 西安电子科技大学数学与统计学院 3 21 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (16)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (10)
二级引证文献  (7)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(4)
  • 引证文献(4)
  • 二级引证文献(0)
2018(6)
  • 引证文献(2)
  • 二级引证文献(4)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
特征提取
主成分分析
核主成分分析
QR分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安理工大学学报
季刊
1006-4710
61-1294/N
大16开
西安市金花南路5号
1978
chi
出版文献量(篇)
2223
总下载数(次)
6
总被引数(次)
21166
论文1v1指导