本文提出一种多尺度特征匹配的空间约束机制,Combinative Feature based on Constraint in scale spaee(CFCS-SIFT),该约束机制以SIFT特征点的尺度为基础,对多尺度空间中检测到的DOG特征点与Harris角点提供匹配空间约束,以提高正确匹配点对的数量.基于该约束机制,构造了一种融合DOG特征提取、Harris角点提取原理的SIFT描述符提取与匹配方法,该方法在多尺度空间中提取DOG特征点、Harris角点,并根据特征点的空间、坐标参数获取SIFT描述符.在将DOG特征点和Harris角点相融合并生成SIFT描述符的基础上,设定尺度阈值,根据尺度阈值对检测范围进行空间约束,在约束范围内查找特征点,采用BBF(Best Bin First)算法,并用欧氏距离作为度量函数进行特征点的匹配,最后用RANSAC对匹配点对进行筛选纠错.通过大量实验证明,该算法能够找到更多匹配点对,正确匹配点对相对于不具有空间约束的融合特征点匹配方法增加了15%左右.