基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
布谷鸟搜索算法是一种新兴的自然仿生优化技术,其借用Lévy Flights随机走动和Biased随机走动搜索新的解。在Lévy Flights随机走动中,所有个体以当前种群获得的最优解为导向进行搜索,这容易导致种群趋同于该最优解。针对此问题,引入反方向视角使种群基于一定概率反向搜索,以避免趋同于当前最优解,并提出带反方向视角和二项式交叉的布谷鸟搜索算法。在提出的算法中,借用二项交叉操作以提高Biased随机走动的搜索能力。与标准的布谷鸟搜索算法对比,实验结果说明提出的策略能够有效地改善布谷鸟搜索算法求解连续函数优化问题的收敛速度和解的质量。与其他改进的布谷鸟搜索算法以及其他进化算法对比,实验结果说明提出的算法在求解连续函数优化问题上具有一定的竞争力。
推荐文章
云模型的布谷鸟搜索算法
布谷鸟搜索算法
云模型
云模型的布谷鸟搜索算法
基于粒子群算法的布谷鸟搜索算法
布谷鸟搜索
Levy飞行
粒子群优化算法
基于高斯扰动的布谷鸟搜索算法
布谷鸟搜索算法
高斯扰动
收敛速度
基于蚁群算法优化的布谷鸟搜索算法
Levy飞行
布谷鸟搜索算法
蚁群优化算法
鸟巢位置更新策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 带反方向视角和二项交叉的布谷鸟搜索算法
来源期刊 计算机科学与探索 学科 工学
关键词 布谷鸟搜索算法 反方向视角 二项交叉 函数优化问题
年,卷(期) 2015,(8) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 1010-1017
页数 8页 分类号 TP183
字数 4267字 语种 中文
DOI 10.3778/j.issn.1673-9418.1409067
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁忠 福建农林大学计算机与信息学院 21 65 4.0 6.0
2 周术诚 福建农林大学计算机与信息学院 20 131 7.0 11.0
3 林要华 福建农林大学计算机与信息学院 7 16 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (80)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (9)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(12)
  • 参考文献(1)
  • 二级参考文献(11)
2013(7)
  • 参考文献(4)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
布谷鸟搜索算法
反方向视角
二项交叉
函数优化问题
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导