基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的:了解医院住院量的变动趋势,对医院出院人数进行预测分析,为科学决策提供依据。方法应用乘积季节ARIMA模型对某院2003年1月-2013年12月出院人数进行模型拟合,预测2014年各月出院人数,用2014年1月-6月份实际资料评估模型的预测效果。结果该院出院人数呈明显的季节效应,且出院人数逐年小幅递增;乘积季节ARIMA(1,1,1)×(0,1,1)12(不含常数项)模型为最优模型,标准化的BIC(标准化贝叶斯信息量)和平均绝对误差百分比(MAPE)值最小,BIC 值为11.98,MAPE 值为5.43。Ljung-Box检验无统计学意义(Q18=10.575,P=0.782)。结论乘积季节ARIMA模型可以较好地拟合出院人数的变化趋势,是一种短期预测精度较高的预测模型。
推荐文章
基于乘积季节 ARIMA模型的出院人数预测
ARIMA模型
出院人数
时间序列
基于ARIMA的乘积季节模型在桥梁拱座位移监测中的应用
时间序列分析
桥梁拱座位移
ARIMA模型
乘积季节模型
基于ARIMA乘积季节模型的流行性感冒预测分析
流行性感冒
时间序列
ARIMA乘积季节模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 ARIMA乘积季节模型在出院人数预测中的应用
来源期刊 中国病案 学科
关键词 ARIMA乘积季节模型 时间序列 出院人数 预测
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 73-76
页数 4页 分类号
字数 3234字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (64)
参考文献  (8)
节点文献
引证文献  (7)
同被引文献  (49)
二级引证文献  (37)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(13)
  • 参考文献(1)
  • 二级参考文献(12)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(6)
  • 引证文献(4)
  • 二级引证文献(2)
2017(11)
  • 引证文献(2)
  • 二级引证文献(9)
2018(11)
  • 引证文献(1)
  • 二级引证文献(10)
2019(13)
  • 引证文献(0)
  • 二级引证文献(13)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
ARIMA乘积季节模型
时间序列
出院人数
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国病案
月刊
1672-2566
11-4998/R
大16开
北京市朝阳区白家庄路8号首都医科大学附属北京朝阳医院
80-109
2000
chi
出版文献量(篇)
8908
总下载数(次)
6
总被引数(次)
39280
论文1v1指导