基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高目标跟踪的准确性,针对当前目标跟踪算法的光照、遮挡以及姿态变化鲁棒性差等问题,提出了一种二维主成分分析和稀疏表示的目标跟踪算法。采用二维主成分分析和稀疏表示降低数据维数,减少计算复杂度,采用粒子滤波算法跟踪序列图像中的运动目标,采用仿真实验测试算法的性能。仿真结果表明,相对于其他运动目标跟踪算法,该算法可以更准确跟踪视频图像中的运动目标,并对光照和姿态变化具有良好的鲁棒性,对于严重遮挡目标跟踪问题,具有明显的优势。
推荐文章
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
样本分块稀疏表示判决式目标跟踪
粒子滤波
样本分块
稀疏表示
分类器
基于双向2DPCA与SVM的木材死节缺陷图像分割算法
双向2DPCA
SVM
死节缺陷
图像分割
基于BP神经网络的2DPCA人脸识别算法
人脸识别
2DPCA
BP神经网络
图像预处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 2DPCA与稀疏表示模型的运动目标跟踪法
来源期刊 计算机工程与应用 学科 工学
关键词 运动目标跟踪 二维主成分分析 稀疏表示 粒子滤波算法
年,卷(期) 2015,(4) 所属期刊栏目 图形图像处理
研究方向 页码范围 201-204
页数 4页 分类号 TP391
字数 2749字 语种 中文
DOI 10.3778/j.issn.1002-8331.1406-0419
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
2 杨秋芬 中南大学信息科学与工程学院 14 156 7.0 12.0
6 胡豁生 中南大学信息科学与工程学院 7 29 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (94)
参考文献  (13)
节点文献
引证文献  (6)
同被引文献  (12)
二级引证文献  (2)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(11)
  • 参考文献(0)
  • 二级参考文献(11)
2010(18)
  • 参考文献(5)
  • 二级参考文献(13)
2011(7)
  • 参考文献(3)
  • 二级参考文献(4)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
运动目标跟踪
二维主成分分析
稀疏表示
粒子滤波算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导