作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是一种很流行的机器学习方法,在许多领域都有了广泛的使用。传统的支持向量机模型是寻求类之间的间隔最大化,而忽视了一个重要的信息—样本的类内结构,类内离散度。文中将Fisher判别分析里面的类内离散度引入到最小二乘支持向量机中,提出了基于类内离散度的最小二乘支持向量机模型。并通过核函数将样本映射到高维特征空间,在特征空间中进行样本分类。基于UCI数据库的数据集实验测试表明,基于类内离散度的最小二乘支持向量机提高了分类的准确度。
推荐文章
基于MapReduce的最小二乘支持向量机回归模型
最小二乘支持向量机
MapReduce编程模式
局部多模型方法
加速比
可扩展性
基于最小二乘支持向量机的双模控制
预测控制
最小二乘支持向量机
稳定性
李亚普诺夫方法
双模控制
基于最小二乘支持向量机的多属性决策
多属性决策
最小二乘支持向量机
效用函数
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于类内离散度的最小二乘支持向量机
来源期刊 计算机技术与发展 学科 工学
关键词 类内离散度 分类 最小二乘支持向量机 核方法
年,卷(期) 2015,(4) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 71-74
页数 4页 分类号 TP31
字数 2829字 语种 中文
DOI 10.3969/j.issn.1673-629X.2015.04.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李雷 南京邮电大学理学院 82 539 12.0 18.0
2 薛松 南京邮电大学理学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (155)
参考文献  (15)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(7)
  • 参考文献(2)
  • 二级参考文献(5)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
类内离散度
分类
最小二乘支持向量机
核方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导