基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
点云数据的分割是点云数据处理流程中的重要内容,同时也是点云数据三维重建的前提和基础.该研究在模糊C-均值聚类(FCM)算法的基础上,根据标靶点云和建筑物点云数据的不同特征进行实验,通过Matlab对地面雷达的标靶、建筑物点云数据进行分割,探讨模糊C-均值聚类算法对点云数据分割的可行性.实验结果显示,通过选择正确点云数据的特征属性,利用模糊C-均值算法对点云数据分割具有一定的可行性.
推荐文章
新的鲁棒模糊C-均值聚类分割算法及其应用
图像分割
模糊C-均值聚类
聚类中心表达式
划分系数
基于邻域的多尺度模糊C-均值聚类图像分割
邻域
多尺度
模糊C-均值聚类
图像分割
应用遗传模糊聚类实现点云数据区域分割
模糊聚类
遗传算法
区域分割
点云数据
逆向工程
核空间局部自适应模糊C-均值聚类图像分割算法
自适应中值算法
模糊C-均值聚类
核函数
局部空间信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 模糊C-均值聚类对点云数据的分割
来源期刊 安徽农业科学 学科 农学
关键词 点云数据分割 特征 模糊C-均值聚类 可行性
年,卷(期) 2015,(17) 所属期刊栏目 农业信息科学
研究方向 页码范围 353-356
页数 4页 分类号 S127
字数 2652字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 施昆 103 445 12.0 17.0
2 曹影 3 20 3.0 3.0
3 胡文庆 2 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (51)
参考文献  (8)
节点文献
引证文献  (4)
同被引文献  (16)
二级引证文献  (16)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(3)
  • 参考文献(1)
  • 二级参考文献(2)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(8)
  • 引证文献(0)
  • 二级引证文献(8)
2019(7)
  • 引证文献(1)
  • 二级引证文献(6)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
点云数据分割
特征
模糊C-均值聚类
可行性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽农业科学
半月刊
0517-6611
34-1076/S
大16开
安徽省合肥市农科南路40号
26-20
1961
chi
出版文献量(篇)
78281
总下载数(次)
236
总被引数(次)
436536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导