基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文尝试通过脑电信号检测方法辅助多动症儿童进行临床个体化诊断.首先基于一种经典的干扰控制试验任务Simon-spatial Stroop范例采集14名多动症儿童和16名正常儿童的脑电数据,并完成滤波、分段、去伪迹等预处理;然后采用主成分分析(PCA)进行电极优化选择,分别选取每种刺激模式下出现率90%以上的优化电极作为共有电极,并提取共有电极潜伏期(200~450 ms)波幅的均值特征;最后采用基于欧氏距离的k-最近邻(KNN)和基于径向基核函数的支持向量机(SVM)分类器来分类.实验发现同种试验任务中多动症儿童比正常儿童表现出更低的反应正确率和更长的反应时间;多动症儿童与正常儿童的前额叶优化电极均出现N2,顶枕叶均有P2出现,且多动症儿童的峰值更低;在该实验中KNN分类准确率高于SVM分类器,StI刺激模式下KNN分类器的最高分类准确率为89.29%.以上结果说明,干扰控制试验中多动症儿童与正常儿童的前额叶及顶枕叶的脑电信号存在差异,该结果可为多动症个体的脑电信号临床诊断提供一定科学依据.
推荐文章
基于深度学习的ADHD儿童和正常儿童脑电信号分类研究
干扰控制任务实验
注意缺陷多动障碍
长短期记忆网络
改进的主成分分析和最近邻的人脸识别方法
人脸识别
主成分分析
奇异值分解
聚类分析
最近邻分类
基于改进的K-最近邻算法的病毒检测方法
K-最近邻算法
计算机病毒
病毒检测
Internet
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于脑电主成分分析和k-最近邻的多动症儿童与正常儿童分类研究
来源期刊 生物医学工程学杂志 学科 医学
关键词 脑电图 多动症 干扰控制 主成分分析 分类
年,卷(期) 2016,(2) 所属期刊栏目 论著
研究方向 页码范围 232-238
页数 7页 分类号 R749.94|TP391.4
字数 语种 中文
DOI 10.7507/1001-5515.20160041
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (501)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电图
多动症
干扰控制
主成分分析
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物医学工程学杂志
双月刊
1001-5515
51-1258/R
大16开
四川省成都市武候区外南国学巷37号 四川大学华西医院
62-65
1984
chi
出版文献量(篇)
5280
总下载数(次)
31
总被引数(次)
37300
论文1v1指导