基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对污水处理过程中曝气池溶解氧浓度无法精确在线测量的问题,本文采用BP神经网络建立了溶解氧浓度预测的软测量模型.将进水参数氨和铵根离子态的氮Snh、快速可生物降解有机物Ss、异养菌生物量Xbh、颗粒性不可生物降解有机物Xi、慢速可生物降解有机物Xs以及进水流量Q作为BP神经网络软测量模型的输入变量,采用遗传算法对BP神经网络的初始连接权值和阈值进行优化.对预测结果的准确性及遗传算法优化BP神经网络的泛化能力进行了分析,讨论了数据归一化对软测量模型预测结果的影响.仿真结果表明,采用遗传算法优化BP神经网络的权值和阈值以及对训练数据归一化处理,有效地解决了溶解氧浓度BP软测量模型精度差的问题,使溶解氧软测量模型的测量精度明显增强.
推荐文章
溶解氧浓度的神经网络控制研究
神经网络
溶解氧
控制
污水处理
基于SOM-RBF神经网络的COD软测量方法
化学需氧量
软测量
自组织特征映射
径向基函数网络
神经网络
模型
预测
基于PSO优化RBF神经网络的溶解氧预测算法研究
渔业养殖
物联网
径向基函数神经网络
粒子群算法
溶解氧预测
基于混合神经网络的臭氧浓度软测量
臭氧发生器
臭氧浓度
神经网络
软测量模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的溶解氧浓度软测量方法研究
来源期刊 计算机与应用化学 学科 化学
关键词 溶解氧浓度 遗传算法 神经网络 软测量 数据归一化
年,卷(期) 2016,(1) 所属期刊栏目 研究论文
研究方向 页码范围 117-121
页数 5页 分类号 TQ015.9|TP391.9|O6-39
字数 3871字 语种 中文
DOI 10.16866/j.com.app.chem201601023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 安爱民 19 80 6.0 7.0
2 宋厚彬 14 53 4.0 6.0
3 张浩琛 11 56 6.0 7.0
4 祁丽春 2 17 2.0 2.0
5 丑永新 10 138 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (81)
参考文献  (16)
节点文献
引证文献  (10)
同被引文献  (43)
二级引证文献  (6)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(14)
  • 参考文献(0)
  • 二级参考文献(14)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(9)
  • 参考文献(2)
  • 二级参考文献(7)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(7)
  • 参考文献(5)
  • 二级参考文献(2)
2012(5)
  • 参考文献(3)
  • 二级参考文献(2)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(5)
  • 引证文献(5)
  • 二级引证文献(0)
2018(5)
  • 引证文献(3)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
溶解氧浓度
遗传算法
神经网络
软测量
数据归一化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与应用化学
双月刊
1001-4160
11-3763/TP
大16开
北京中关村北二街2条1号
82-500
1984
chi
出版文献量(篇)
5704
总下载数(次)
10
总被引数(次)
27612
论文1v1指导