基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对神经网络的性能与网络的输入变量和训练样本关系密切的特征,提出基于互信息冗余性分析的神经网络风电功率预测方法,实现通过互信息的相关性排序滤波器来筛选各输入变量与目标变量间的相关性,以获取相关度大的输入变量;再由多变量互信息即交互增益构建冗余滤波器,滤除冗余的相关变量,获得一个最简约的最优输入变量集.两个滤波器的参数由交叉验证算法来获取最优值.以湖南郴州某风场的实测数据为例进行相关实验,结果表明:本方法在减少输入变量情况下,能获得较好的预测性能.
推荐文章
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
自适应变异粒子群优化BP的短期风电功率预测模型
短期风电预测
互信息
自适应惯性权重系数
变异因子
反向传播神经网络
基于NWP和深度学习神经网络短期风功率预测
风功率预测
深度学习神经网络
数值天气预报
建立转换模型
概率密度
案例分析
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于互信息冗余性分析的神经网络风电功率预测
来源期刊 湘潭大学自然科学学报 学科 工学
关键词 风功率预测 互信息 冗余性 相关性 神经网络
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 68-72
页数 5页 分类号 TM614
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (1)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(25)
  • 参考文献(0)
  • 二级参考文献(25)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风功率预测
互信息
冗余性
相关性
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湘潭大学学报(自然科学版)
双月刊
2096-644X
43-1549/N
大16开
湖南省湘潭市
42-33
1978
chi
出版文献量(篇)
3518
总下载数(次)
1
总被引数(次)
14911
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导