基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对葡萄酒物理和化学数据成分冗余,提出了两种葡萄酒分类的算法,分别是主成分分析K均值和主成分分析自组织神经网络算法.这两种算法对葡萄酒的物理化学成分进行了主成分分析,提取了主要的影响因素,将输入维数降低,再利用K均值和自组织神经网络算法分别对葡萄酒进行分类和比较.实验结果表明,PCA-K-means和PCA-SOM都具有较高的准确率,都有一定的使用价值和可操作性,并且PCA-K-means算法优于其它的算法.
推荐文章
基于PCA-K-means的卫星遥感图像的颜色特征提取技术
PCA
K-means
卫星遥感图像
颜色特征提取
基于模糊递归小波神经网络的葡萄酒品质预测
模糊递归小波神经网络
葡萄酒
品质预测
基于PCA的GABP神经网络入侵检测方法
主成分分析
遗传神经网络
入侵检测系统
仿真实验
基于PCA-PSO-BP神经网络的管道剩余强度评价
管道剩余强度
PCA-PSO-BP神经网络
影响因素
平均绝对误差
预测结果
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA-K-means和PCA-SOM神经网络的葡萄酒分类
来源期刊 数学的实践与认识 学科
关键词 主成分分析 K-平均算法 自组织神经网络
年,卷(期) 2016,(17) 所属期刊栏目 应用
研究方向 页码范围 168-173
页数 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王建中 中北大学理学院 42 118 6.0 8.0
2 白艳萍 中北大学理学院 124 639 13.0 19.0
3 胡红萍 中北大学理学院 79 243 9.0 12.0
4 霍双红 中北大学理学院 2 4 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (42)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (17)
二级引证文献  (1)
1967(2)
  • 参考文献(0)
  • 二级参考文献(2)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
主成分分析
K-平均算法
自组织神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数学的实践与认识
半月刊
1000-0984
11-2018/O1
16开
北京大学数学科学学院
2-809
1971
chi
出版文献量(篇)
15632
总下载数(次)
52
总被引数(次)
67673
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导