基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
经典序贯蒙特卡罗概率假设密度(Sequential Mote Carlo Probability Hypothesis Density,SMC-PHD)滤波中,将目标状态转移密度函数做为建议密度函数,没有利用当前观测信息,导致大部分预测粒子状态偏离目标真实状态,粒子退化严重.针对上述问题,提出利用均方根容积卡尔曼滤波产生建议密度函数,对其进行采样得到预测粒子状态,该方法有严格理论基础,能有效减轻SMC PHD滤波中的粒子退化,且适用性很强.仿真实验对比了该算法、经典SMC-PHD和基于无迹卡尔曼的SMC-PHD算法的跟踪性能,验证了该方法无论对势估计还是对目标状态估计的精度都优于其他两种算法.
推荐文章
应用Dirichlet分布的概率假设密度多目标跟踪
多目标跟踪
概率假设密度
Dirichlet分布
状态提取
k-d树
期望极大化
基于概率假设密度的无线传感器网络多目标跟踪算法
概率假设密度滤波
无线传感器网络
多目标跟踪
随机有限集
粒子滤波
多目标跟踪的高斯混合概率假设密度滤波算法
随机有限集
多目标跟踪
高斯混合
概率假设密度
基于改进的概率假设密度多目标跟踪算法
多目标跟踪
高斯混合
概率假设密度
权值更新
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进概率假设密度的多目标跟踪算法
来源期刊 电波科学学报 学科 工学
关键词 多目标跟踪 概率假设密度滤波 序贯蒙特卡罗 建议密度函数 均方根容积卡尔曼滤波
年,卷(期) 2016,(1) 所属期刊栏目 论文
研究方向 页码范围 53-60
页数 8页 分类号 TN953
字数 6428字 语种 中文
DOI 10.13443/j.cjors.2015031801
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王俊 西安电子科技大学雷达信号处理国家重点实验室 100 1184 16.0 31.0
2 王海环 西安电子科技大学雷达信号处理国家重点实验室 5 33 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (29)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (5)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(7)
  • 引证文献(2)
  • 二级引证文献(5)
研究主题发展历程
节点文献
多目标跟踪
概率假设密度滤波
序贯蒙特卡罗
建议密度函数
均方根容积卡尔曼滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电波科学学报
双月刊
1005-0388
41-1185/TN
大16开
河南市新乡138信箱3分箱
36-260
1986
chi
出版文献量(篇)
3417
总下载数(次)
11
总被引数(次)
30224
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导