作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文本分词是各个互联网领域中的基础性工作。通过对平台涉及的文本串进行切词处理,对切词之后的短文本串更能够聚合用户。隐马尔可夫模型作为机器学习领域中重要算法,它能够进行各个状态之间的转换,对于文本中词语之间上下文语义关系、词语与词语之间前后向位置关系非常匹配,众多的开源分词工具都基于隐马尔可夫模型。
推荐文章
基于隐马尔可夫模型的中文文本事件信息抽取
隐马尔可夫模型
事件信息抽取
触发词
事件要素
基于改进隐马尔可夫模型的文本分类研究
隐马尔可夫模型
文本分类
期望交叉熵(ECE)
χ2统计
TF-IDF方法
基于隐马尔可夫模型的文本情感分析
隐马尔可夫模型
情感分类
AdaBoost算法
基于主动学习隐马尔可夫模型的文本信息抽取
主动学习
隐马尔可夫模型
文本信息抽取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 隐马尔可夫模型在中文文本分词中应用研究
来源期刊 无线互联科技 学科
关键词 文本分词 上下文语义 隐马尔可夫模型
年,卷(期) 2016,(13) 所属期刊栏目 实验研究
研究方向 页码范围 106-107
页数 2页 分类号
字数 2411字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王庆福 72 209 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (272)
参考文献  (5)
节点文献
引证文献  (15)
同被引文献  (11)
二级引证文献  (10)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(9)
  • 参考文献(1)
  • 二级参考文献(8)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(12)
  • 引证文献(9)
  • 二级引证文献(3)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
文本分词
上下文语义
隐马尔可夫模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线互联科技
半月刊
1672-6944
32-1675/TN
16开
江苏省南京市
2004
chi
出版文献量(篇)
18145
总下载数(次)
78
总被引数(次)
27320
论文1v1指导